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Abstract— Consider observing a collection of discrete events
within a network that reflect how network nodes influence one
another. Such data are common in spike trains recorded from
biological neural networks, interactions within a social network,
and a variety of other settings. Data of this form may be modeled
as self-exciting point processes, in which the likelihood of future
events depends on the past events. This paper addresses the
problem of estimating self-excitation parameters and inferring
the underlying functional network structure from self-exciting
point process data. Past work in this area was limited by strong
assumptions which are addressed by the novel approach here.
Specifically, in this paper we 1) incorporate saturation in a point
process model which both ensures stability and models non-
linear thresholding effects; 2) impose general low-dimensional
structural assumptions that include sparsity, group sparsity,
and low-rankness that allows bounds to be developed in the
high-dimensional setting; and 3) incorporate long-range memory
effects through moving average and higher-order auto-regressive
components. Using our general framework, we provide a number
of novel theoretical guarantees for high-dimensional self-exciting
point processes that reflect the role played by the underlying
network structure and long-term memory. We also provide
simulations and real data examples to support our methodology
and main results.

Index Terms— Network theory (graphs), autoregressive
processes, time series analysis, point processes, sparse matrices.

I. INTRODUCTION

IN A variety of settings, our only glimpse of a network’s
structure is through the lens of discrete-time series observa-

tions. For instance, in a social network, we may observe a time
series of members’ activities, such as posts on social media.
In electrical systems, cascading chains of power failures reveal
critical information about the underlying power distribution
network. During epidemics, networks of computers or of a
population are reflected by the time at which each node
becomes infected. In biological neural networks, firing neurons
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can trigger or inhibit the firing of their neighbors, so that
information about the network structure is embedded within
spike train observations.

This paper focuses on estimating the influence network
which models the extent to which one node’s activity stimu-
lates or inhibits activity in another node. For instance, the net-
work structure may indicate who is influencing whom within
a social network [1]–[6], the connectivity of neurons [7]–[14],
interactions among financial instruments [15]–[17], how power
failures may propagate across the power grid [18], or patterns
of criminal activity and military engagements [3], [5], [17],
[19], [20]. The interactions between nodes are thus critical
to a fundamental understanding of the underlying functional
network structure and accurate predictions of likely future
events.

Learning the influence network presents a number of chal-
lenges both in terms of formulating the model and developing
suitable theory and methodology. First, in the applications
described above the number of network nodes is typically large
relative to the length of time they are observed, making the
network parameter high-dimensional. Furthermore, the most
natural model in these settings are multivariate self-exciting
point processes (SEPPs). While empirical work has demon-
strated the efficacy of SEPP models in various applications
(cf., [15], [17]–[20]), little is known about the statistical
properties of these estimators. In this paper, we formulate a
model and provide a general framework for estimating network
parameters in discrete-time high-dimensional SEPP models.

Let M denote the number of nodes in the network and
T the number of time intervals over which we collect data.
We observe Xt,m , the number of events at node m during time
period t , for m = 1, . . . , M and t = 1, . . . , T . We model these
counts as

Xt,m ∼ Poisson(λt,m)

where the logarithm of λt,m is a function of the previous
counts of events in the network and the interactions between
nodes. For a simple example, we might have log λt,m =�M

m�=1 Am,m� Xt−1,m� . However, a fundamental challenge asso-
ciated with SEPP models is that they can be highly
unstable: due to the exponential link function, the counts
can diverge even when the interactions {Am,m� } are small.
In [21] Gerhard et al. give extensive justification for the
interest in these models from a neuroscience perspective,
but also show how learned model parameters can result in
generative models that are highly inconsistent with physio-
logical measurements. Existing statistical learning bounds for
SEPP models [22] guarantee stability by assuming all network
interactions are inhibitory.
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A major contribution of this work is learning guarantees
for SEPPs without restrictive assumptions on the structure of
the network or types of interactions among nodes. We will
address stability issues by introducing saturation effects on
the rate parameter λt,m . Saturated SEPP models were recently
described in application-driven work without theoretical guar-
antees [18]. In contrast, this work aims to derive statistical
learning guarantees for saturated point processes.

We study a fairly general class of saturated SEPPs whose
parameters can be estimated via regularized maximum likeli-
hood estimation. We assume that the number of possible inter-
actions between nodes (i.e., graph edges) M2 is large relative
to the number of time points T , but that the network has an
underlying low-dimensional structure that can be promoted via
regularization. The question we address in our theory is how
many time points T are needed to guarantee a desired level
of statistical accuracy in terms of the number of nodes M ,
the underlying network structure, the regularizer used, and the
type of saturation effects introduced?

A. Relationship to Prior Work

A number of works have studied linear SEPPs (where
λt,m is a linear function of past events, in contrast to log-
linear models, where log λt,m is a linear function of past
events) from a theoretical perspective. Examples include works
on the Hawkes process [23]–[27]. In a multivariate Hawkes
process setting, one frequently aims to learn the excitation
matrix characterizing interactions within the network. In [28]
Etesami et al. establish that learning the excitation matrix is
sufficient for learning the directed information graph of the
process. The linear Hawkes process is frequently studied under
an assumption there are no inhibitory interactions, although
recent work [23] was able to incorporate both inhibitory and
stimulatory interactions. Prior work on learning parameters in
discrete high-dimensional time series models requires linear-
ity or Gaussianity assumptions (cf., [29]) which do not hold
in our model.

In contrast, we study log-linear SEPPs. Prior works
have demonstrated the empirical value of log-linear
SEPPs [30], [31] and these models are frequently used
in the neuroscience community [21]. Moreover, log-linear
point process models can be advantageous from the
perspective of optimization [32] and naturally allow for
inhibitory interactions. However, log-linear SEPPs can not
easily model stimulatory interactions while maintaining
stability, and incorporating stimulatory interactions is a major
contribution of this paper.

There is limited work on learning rates for log-linear SEPPs,
and much of it is only applicable in the setting where M is
small relative to T [33]. The most related work is our recent
work [22] which considers a special case of our SEPP along
with a sparsity assumption on the network and applies in the
high-dimensional setting. This prior work is limited since the
model only considers recent memory, sparsity regularization,
and assumes only inhibitory influences to ensure stability
and learnability. One question of interest for future work is
whether the ideas from this paper could be used to establish

learning rates in a discrete-time linear SEPP. While we use
saturation effects to ensure that the firing rate λt,m will not
diverge, one can imagine introducing saturation in a discrete-
time linear SEPP in order to guarantee λt,m > 0. [23] allows
for inhibitory interactions in a continuous-time linear SEPP
using a strategy along these lines.

B. Main Contributions

Our paper makes the following major contributions.
• We provide a general upper bound (Theorem III.1) for

developing theoretical guarantees for estimating SEPPs
and build on the analysis in [22] in three significant ways.
First, we incorporate saturation effects in our model by
using a thresholding function in order to ensure stability,
and account for these effects in our theory. Second,
we provide learning rates for a class of processes which
incorporate longer-range dependence effects in a variety
of ways, improving upon [22] which only considers
first-order auto-regressive models. Finally, we allow for
several different regularization choices corresponding to
various prior beliefs about the structure of the network.

• We apply our general upper bound to a number of differ-
ent processes and regularization schemes. For processes
with longer-range dependence, we prove that a restricted
eigenvalue condition holds for the ARMA(1, 1) and
AR(2) models in Lemmas IV.1 and IV.2 respectively.

• In terms of regularization schemes, we consider
strict sparsity, group sparsity and low-rank regular-
ization and provide three novel guarantees stated in
Theorems IV.4, IV.6 and IV.8. Up to log factors, all our
mean-squared error bounds match the optimal bounds
under a linear regression model with no autoregressive
component.

• A thorough simulation study in Section VI provides
support for our theoretical mean-squared error bounds and
also examines parameters associated with the magnitude
of the entries of A∗ and clipping thresholds.

• We further demonstrate the practical benefits of our regu-
larized likelihood framework on three real data examples.
The first involves modeling the interplay between crime
events in different neighborhoods of Chicago, the second
modeling connections between different neurons in the
brain within a rat during sleep and wake states, and the
third involving meme-tracker data in social networks. The
three examples illustrate the advantages of using different
regularizers.

• Finally, we show that our SEPP framework can be
viewed as a discretization of the widely studied Hawkes
process, and discuss some advantages of considering
point processes in discrete-time.

C. Notation

For a matrix A, we let am. denote the mth row of A and
a.m denote the mth column of A. We then let �am.�1+ denote
the sum of the positive entries of am. and �am.�1− denote the
absolute value of the sum of the negative entries of am., so that

�am.�1 = �am.�1+ + �am.�1−.
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Given a norm � · �R on a real vector space, we let � · �R∗
denote its dual norm defined by

�v�R∗ = sup
�u�R≤1

< u, v >

where < ·, · > denotes the standard inner product. Throughout
the paper, we work with mixed norms

�A�p,q = (
�

m

�am.�p
q )

1
p ,

as well as the nuclear norm

�A�∗ =
M�

i=1

σi (A)

where σi (A) denotes the i th singular value of A, and the
operator norm

�A�op = sup
�x�2≤1

�Ax�2.

The Frobenius norm, denoted by � · �F , is a special case of
the � · �p,q norm with p = q = 2.

Finally, we let �A�0 denote the number of nonzero elements
of a matrix A.

II. MODEL FORMULATION

In this section, we present a class of SEPPs and discuss how
saturation effects can be included in order to ensure stability.
Recall that Xt,m denotes the number of events from node m
during time period t for m = 1, . . . , M and t = 1, . . . , T . To
start, consider the following model:

Xt+1,m ∼ Poisson(λt+1,m) (II.1)

log(λt+1,m) = νm +
t�

s=1

M�

m�=1

hm,m� [t − s]Xs,m� . (II.2)

Here the logarithm of the rate for Xt+1,m is linear in all
the previous observations. For each node m� in the network,
that node’s count Xs,m� at time s is scaled by an influence
function hm,m� evaluated at t −s. The influence function hm,m�
describes the relationship between nodes m and m�. As in [23],
we assume each influence function can be written as the linear
combination of K known basis functions {φk}K

k=1, i.e.,

hm,m� [t] =
K�

k=1

am,m�,kφk[t].

Hence estimating the network structure amounts to estimating
the matrix A∗ ∈ R

M×M K where the mth row of A∗ is��
am,m�,k

�M
m�=1

�K

k=1
It will be convenient to rewrite (II.2) in

matrix-vector form as

log(λt+1) = ν + A∗g(Xt ), (II.3)

where Xt = [X1, . . . , Xt ] denotes the history of the process
up to time t and g(XT ) ∈ R

M K×1 is the vector defined as
follows. For k = 1, . . . , K , let

gk(XT ) :=

⎡

⎢
⎢
⎢
⎣

�T
s=1 Xs,1φk[T − s]

�T
s=1 Xs,2φk[T − s]

...
�T

s=1 Xs,Mφk[T − s]

⎤

⎥
⎥
⎥
⎦

(II.4)

and

g(XT ) :=

⎡

⎢
⎢
⎢
⎣

g1(XT )
g2(XT )

...
gK (XT )

⎤

⎥
⎥
⎥
⎦

. (II.5)

A number of commonly studied discrete-time models can
be realized in this manner. We briefly mention two which are
discussed further in Section IV. As a first example, K = 1 and
φ[t] = αt corresponds to an autoregressive moving average
ARMA(1, 1) process. When K = p and φk[t] = I{k=t} where

I{B} :=
�

1, B true

0, otherwise
is the indicator function, we recover

the AR(p) process. This second example shows the value
in assuming that hm,m� is in the span of a collection of
basis functions, rather than just one. Allowing for multiple
basis functions allows us to study processes which incorporate
higher order effects in more sophisticated ways than would be
possible with only one basis function.

We let νmin and νmax be upper and lower bounds on the
constant offset parameter νm in (II.2) and we assume that
A∗ lies within a set A which we define as follows. Let
amax be an upper bound on �a∗

m.�1+ and similarly let amin
be an upper bound on �a∗

m.�1−. We let A denote the set of
M × M K matrices with �am.�1− ≤ amin and �am.�1+ ≤ amax
for all m. With the assumption that A∗ ∈ A we can search
for an estimate �A of A∗ over the bounded set A. We need
to assume that A∗ lies within this bounded set in the proof
of Theorem III.1. A similar assumption appears in [22]. Our
simulations illustrate that this assumption is an artifact of the
analysis, and that one can search for an estimate of A∗ over an
unconstrained set in practice. However, we also note that this
is a mild assumption: if each row a∗

m of A∗ is sparse then it
is reasonable to assume that ||a∗

m||1 is bounded by a universal
constant even when M is very large.

A. Saturation

As discussed in the introduction, point process models along
the lines of (II.3) are widely used to describe count data in
a variety of applications. However, due to instability issues
inherent to SEPPs of this form, these models can be highly
unstable and lead to unbounded counts. Hence, pure SEPPs
make poor generative models (c.f., [21]) and are difficult
to understand theoretically without making overly restrictive
assumptions about A∗ (c.f, [22]). We will address this problem
by introducing saturation effects to the vector g(Xt ) defined in
Equation (II.5). The application focused work [18] introduced
saturated SEPPs, but to the best of our knowledge, this is
the first work to study the theoretical properties of saturated
models. To address stability issues we adjust the definition of
gk(XT ) in (II.4) to the following:

gk(XT ) =

⎡

⎢
⎢
⎢
⎢
⎣

�T
s=1 min(Xs,1, Ũ )φk[T − s]

�T
s=1 min(Xs,2, Ũ )φk[T − s]

...
�T

s=1 min(Xs,M , Ũ)φk[T − s]

⎤

⎥
⎥
⎥
⎥
⎦

. (II.6)
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That is, each past count which exceeds some threshold Ũ ≥ 1
gets clipped to Ũ . Further, we assume that

∞�

s=1

φk[s] ≤ τ < ∞

for each basis function, so that each entry of g(Xt ) in (II.5)
is bounded by

Ũ
T�

s=1

φk[s] ≤ τ Ũ =: U.

In other words, with clipping we have �g(Xt )�∞ ≤ U ,
guaranteeing the stability of our process.

In particular, this allows us to define the maximum and
minimum Poisson rate from which each observation can be
drawn. We denote the maximum and minimum rates by

Rmax = exp (νmax + amaxU) (II.7a)

Rmin = exp (νmin − aminU) . (II.7b)

Throughout this paper, we take min(., Ũ) to be our satu-
ration function for simplicity. However, our theory extends
to other saturation functions provided that the function is
bounded, which is crucial for our analysis. The details are
provided in Proposition 2 in the appendix.

While this framework has advantages, a central question
we need to address is how departing from the standard SEPP
framework and incorporating non-linear saturation effects
change our estimation errors.

B. Regularized Optimization Formulation

In the high-dimensional setting, the number of potential
pairwise interactions, M2, is large relative to the number of
time periods, T , making standard maximum likelihood opti-
mization techniques unsuitable. Instead, we assume some prior
knowledge on the parameter A∗, which can be incorporated
in estimation via a regularization term �.�R. Specifically,
we consider the estimator

Â = arg min
A∈A

T�

t=0

M�

m=1

exp
�
νm + a


m.g(Xt )
�

− Xt+1,m(νm + a

m.g(Xt )) + λ�A�R (II.8)

where the first two terms of (II.8) are the negative log-
likelihood of the observed data given A. We discuss various
choices of regularization �.�R in the next section. Note that
the optimization problem in (II.8) is convex. Further, it can
easily be generalized to unknown ν; we omit this discussion
here for simplicity of presentation.

III. STATISTICAL LEARNING BOUNDS

A. Decomposable Regularizers

Our learning bounds apply to general decomposable regu-
larizers introduced in [34]. Given a subspace M ⊆ R

M×M K ,
we define its orthogonal complement as

M⊥ = {v ∈ R
M×M K |u, v� = 0 for all u ∈ M}.

Given a normed vector space (RM×M K , � ·�R) and subspaces
M ⊆ M ⊆ R

M×M K , we say R is a decomposable regularizer
with respect to (M,M⊥

) if for A ∈ M and B ∈ M⊥
we

have

�A + B�R = �A�R + �B�R.

This definition encompasses widely-studied regularizers
including the l1 norm, nuclear norm, and the group sparsity
inducing � · �1,2 norm. We refer the reader to [34] for more
details and intuition. While working in this general framework
allows us to incorporate a wide variety of prior beliefs about
the structure of our network, a fundamental question we need
to address is how the specific choice of regularizer effects
our learning rates. Due to the temporal dependence and non-
linearities in SEPP models, deriving learning rates for various
decomposable regularizers requires us to leverage martingale
concentration inequalities.

B. Assumptions

In Section II we presented a class of SEPPs which depends
on a choice of basis functions, and a general RMLE procedure
which depends on a choice of regularization penalty. In this
section, we introduce four assumptions which are needed for
our theoretical guarantees. We then give examples where we
show that for certain choices of basis functions {φ1, . . . φK }
and regularizers �.�R of interest the assumptions hold with
high probability.

Our first assumption depends on the basis functions but is
not related to the choice of regularizer.

Assumption 1 (Restricted Eigenvalue). There exists some
ω > 0 and p ∈ N such that smallest eigenvalue of
E[g(Xt )g(Xt )


|Xt−p] is lower bounded by ω for all t .

Assumption 1 is analogous to various restricted eigenvalue
conditions in other works. However, in much of the literature,
one needs to lower bound the eigenvalues of a sensing matrix
whose columns are assumed to be independent. Dependence
introduced in our autoregressive model makes this a more
complex condition to verify. In past work on sparse autore-
gressive inference (e.g., [29]), restricted eigenvalue conditions
have been framed in terms of a stationary covariance matrix.

Informally, the value of ω measures the strength of the
intertemporal dependence of our process. If our network and
basis functions are structured such that strong long-range
dependencies exist, then the smallest eigenvalue can be near
zero, leading to a poor bound on the error ��A − A∗�2

F .
The RE condition must also account for the level of clipping

in our process: if the network is so stimulatory that most obser-
vations are clipped, then the matrix E[g(Xt )g(Xt )


|Xt−p]
will be nearly singular and ω will be close to zero. Thus,
to come up with an acceptable bound on ω, we need to
establish that our network is well-behaved enough that most
observations will be unclipped. In other words, our theory
suggests that introducing non-linear saturation effects will not
ruin our ability to infer the structure of our network, provided
that our network is not too stimulatory and is usually stable



MARK et al.: NETWORK ESTIMATION FROM POINT PROCESS DATA 2957

without clipping. A further discussion of the intuition behind
the RE condition is provided in Example 1.

Next, we present assumptions which need to be verified
in terms of the regularizer used. Recall that we assume the
regularizer � · �R used in Equation (II.8) is decomposable
with respect to the pair of subspaces (M,M⊥

).

Assumption 2 (Subspace Compatibility). There exists a con-
stant 	(M) satisfying

sup
A∈M

�A�R
�A�F

≤ 	(M).

Assumption 2 is a subspace compatibility condition as
in [34], which controls how large the Frobenius norm can
be relative to the R norm on the subspace M.

Assumption 3 (Cone Row Sparsity). Let AM and AM⊥

denote the projections of a matrix A onto the subspaces M
and M⊥

respectively. Define

B�
R=�

A ∈ R
M×M K :�AM⊥�R≤3�AM�R and �A�F = 1

�
.

Then there exists a constant μR such that

sup
B∈B�

R
�B�2

2,1 ≤ μR.

Assumption 3 corresponds to assuming some notion of row
sparsity on the error matrix �A− A∗ =: �. It is needed to apply
the empirical process techniques from [22].

Assumption 4 (Deviation Bound). Let


t,m = Xt+1,m − exp(νm + a

m.g(Xt )),

then there exists a constant λ < ∞ such that
�
�
�
�
�

1

T

T�

t=1


t g(Xt )


�
�
�
�
�
R∗

≤ λ

2
.

Assumption 4 is similar to deviation bound conditions found
in the literature. Due to the temporal dependence across obser-
vations, we must use martingale concentration inequalities
under various norms in order to verify it.

C. General Result

Provided our process and estimation procedure satisfy
Assumptions 1-4 for reasonable constants, we can guarantee
the learnability of our model. The bound below depends
on values M, T, U and Rmin which were introduced in the
model formulation discussion (Section II), as well as values
p,	(M), λ, ω and μR which were introduced in the discus-
sion of assumptions (Section III-B).

Theorem III.1. Assume (Xt )
T
t=1 is generated by (II.3) and

satisfies Assumptions 1-4 and assume A∗ is estimated accord-
ing to (II.8) with a regularizer � · �R that is decomposable
with respect to the subspaces (M,M⊥

). Then

��A − A∗�2
F ≤ 36 p	(M)λ2

R2
minω

2

with probability at least 1 − 2
M2 for

T ≥ 128 p2U4μ2
R log M

ω2 .

Theorem III.1 is a direct consequence of [34, Th. 1] com-
bined with [22, Th. 1]. Specifically, [34] gives Theorem III.1
in a general decomposable regularizer setup under a restricted
strong convexity (RSC) assumption, which in our language
states that the error � =: �A − A∗ satisfies

1

T

�

t

�

m

(�

m.g(Xt ))

2 ≥ k���2
F

for some k > 0. Due to the fact that our process is neither
linear nor Gaussian, many techniques, e.g., [29], [35], used
to establish an RSC condition directly are unworkable in our
setting. Instead, we use similar techniques to [22, Th. 1] which
uses empirical process results to turn the RSC assumption into
the restricted eigenvalue (RE) condition in Assumption 1.

IV. EXAMPLES

In order to use Theorem III.1, we need to prove that the
four assumptions hold for basis functions and regularizers of
interest. First, we show that Assumption 1 is satisfied for
different point process models. Second we show Assumptions
2-4 are satisfied for a class of regularizers. Finally, we combine
the results from this section with Theorem III.1 to give overall
learning rates for ARMA(1, 1) and AR(2) processes under
different regularization schemes.

Recall that the constants Rmax and Rmin from (II.7) denote
the maximum and minimum Poisson rate for each observation.

A. Specific Point Process Models

Example 1: ARMA(1, 1) process
First-order autoregressive moving average (ARMA(1, 1))

point process models have been studied in a variety of set-
tings [20], [36]. Moreover, the corresponding continuous-time
model is one of the most frequently studied point process mod-
els [16], [37]. Consider the following saturated ARMA(1, 1)
model with memory parameter α ∈ [0, 1):

Xt+1 ∼ Poisson(λt+1)

log(λt+1) = ν + A∗ min(Xt , Ũ) + α log(λt ). (IV.1)

Algebraic manipulation shows that (IV.1) is a special case of
(II.3) with K = 1 basis function corresponding to φ[t] = αt .
Here α is a memory parameter which captures the strength of
the long-range dependence in the process, and �g(Xt )�∞ ≤

Ũ
1−α = U so that

Rmax = exp

�

νmax + amaxŨ

1 − α

�

Rmin = exp

�

νmin − aminŨ

1 − α

�

.

An AR(1) process, corresponding to (IV.1) where α = 0,
was considered in [22]. However, due to the inherent instability
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Fig. 1. Colors indicate the value of κ for a given (amax, Ũ) pair. Note
that due to our exponential link functions, elements of A∗ above one would
be unreasonably excitatory for many networks, and our process can be
significantly stimulatory even with coefficients well below one.

of SEPPs without saturation, the authors were forced to
assume amax = 0.

Lemma IV.1. Suppose (Xt )
T
t=1 is generated according to

(IV.1). Then Assumption 1 is satisfied with

ω = min

�
1

2
Rmin, κ

�

where κ is a constant depending on Ũ , α and amax but
independent of M.

The proof of Lemma IV.1 requires us to account for
the effects of clipping. We show that finding a lower
bound on the eigenvalues of E[g(Xt )g(Xt )


|Xt−p] can be
reduced to finding a lower bound on Var(min(Xt,m, Ũ)|Xt−1),
which simplifies the calculation since we rely on first-order
dependence. Since we need to construct a lower bound on
Var(min(Xt,m, Ũ)|Xt−1) we consider the two cases when the
variance will be smallest.

In particular, if Xt,m ∼ Poisson(Rmin), then its variance will
be small because the variance and mean of a Poisson random
variable are equal. Specifically, when Xt,m ∼ Poisson(Rmin)
we lower bound the variance of min(Xt,m, Ũ) by 1

2 Rmin.
On the other hand, when Xt,m ∼ Poisson(Rmax) and Rmax

is large relative to Ũ , then min(Xt,m, Ũ ) is likely to be
Ũ (clipped), so again the variance will be small. We lower
bound the variance by the constant κ that is the variance of
a Bernoulli random variable, where one outcome corresponds
to a Poisson random variable Z ∼ Poisson(Rmax) exceeding
Ũ (clipped) and the other outcome corresponds to Z < Ũ .

One of these two worst case scenarios will give an absolute
lower bound on the variance. In both cases we construct a
lower bound on the variance independent of M . Note that
ω increases with Rmin = exp(νmin − aminŨ

1−α ) so ω grows
inversely with α. In other words, as the long range memory
of the process increases, Lemma IV.1 suggests that network
estimation becomes more difficult. This is consistent with prior
work [29].

The value κ−2 may be viewed as a proxy for the rate
of clipping, and the appearance of κ in Lemma IV.1 illus-
trates a tradeoff associated with clipped models. On one
hand, clipping ensures a stable process. However, as clipping
increases, it also increases the temporal dependencies among
observations, leading to a smaller κ and larger error bound.

In Figure 1, we fix α = 0 and get a sense of the value of
κ for varying amax and Ũ . (Recall that larger κ corresponds
to a better-posed estimation problem.) We see that for small
Ũ , κ is not prohibitively small for a wide range of values of
amax. However, as Ũ increases the range of reasonable amax
decreases, and as Ũ approaches ∞, we approach the amax =
0 setting from [22]. To understand this trend, we consider a
special case of (IV.1) with M = 1, ν = 0, α = 0, A∗ = 3

10
and Ũ = 1000. In this case, the process follows:

Xt+1 ∼ Poisson

�

exp

�
3 min(Xt , 1000)

10

��

.

Given a small X0, this process will not be clipped for the
first few observations, but eventually the process will diverge
and reach the clipping threshold of 1000. This will happen
within the first 100 observations with probability ≈1. Once
an observation reaches Xt ≥ 1000 and is clipped, the next
observation will follow

Xt+1 ∼ Poisson

�

exp

�
3 min(Xt , 1000)

10

��

= Poisson(exp(300)).

and so Xt+1 is virtually guaranteed to be clipped as well. In
other words, once we actually reach the clipping threshold,
we enter a constant clipping regime which is reflected in the
small value of κ for amax = .3 and Ũ = 1000.

On the other hand, if Ũ = 6 our process follows

Xt+1 ∼ Poisson

�

exp

�
3 min(Xt , 6)

10

��

.

Even when Xt ≥ 6, the Poisson rate exp( 18
10 ) is approximately

6, and so the next observation is reasonably likely to be
unclipped and we do not enter the constant clipping loop
as when Ũ = 1000. In other words, over the long run we
experience less clipping for smaller Ũ , and thus κ is larger
for smaller Ũ .

Example 2: AR(2) process
As a second example, we consider an AR process with two

time lags:

Xt+1 ∼ Poisson(λt+1) (IV.2)

log(λt+1) = ν + A∗
1 min(Xt , Ũ) + A∗

2 min(Xt−1, Ũ ). (IV.3)

This process fits within the framework of (II.3) with two basis
functions corresponding to: φ1[t] = I{t=1} and φ2[t] = I{t=2},

A∗
����

M×2M

= [A∗
1, A∗

2]. This example illustrates the benefit of

considering a basis with more than one element to describe
the influence functions hm,m� . A richer class of higher order
models can be expressed with multiple basis functions. Under
this setup, the maximum and minimum possible Poisson rates
are

Rmax = exp(νmax + amaxŨ)

and

Rmin = exp(νmin − aminŨ).
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Learning rates for high-dimensional linear AR(p) processes
with Gaussian noise were studied in [29]. However, the tech-
niques used in that work to prove a restricted eigenvalue
condition relied heavily on the Gaussianity of the process.
We prove that the restricted eigenvalue condition in
Assumption 1 holds for the AR(2) process in Lemma IV.2.

In order to state Lemma IV.2 we first need several defi-
nitions. A node m is said to be a parent of node m� if it
influences m� through A∗

1, while m� is said to be a child of m.
Furthermore, two nodes are said to be siblings if they share a
parent node.

Lemma IV.2. Suppose (Xt )
T
t=1 is generated according

to (IV.3). Let ρ
(p)
m denote the number of parents of m, let

ρ
(c)
m denote the children of m and let ρ

(s)
m denote the number

of siblings of m. Then

λmin(E[g(Xt )g(Xt )

|Xt−2]) ≥ rρ > 0

for a constant rρ depending on Rmax, Rmin, ρ
(p)
m , ρ

(c)
m , ρ

(s)
m

but independent of M.

The constant rρ scales inversely with ρ
(p)
m , ρ

(c)
m , ρ

(s)
m and

Rmax − Rmin. In the high dimensional setting, this means a
sparsity assumption on A∗ is necessary for our bound to be
useful.

Recall that in order to establish the RE condition we can
lower bound λmin(E[g(Xt )g(Xt )


|Xt−p]) for any p > 0. In
Lemma IV.2 we use p = 2. A computation shows that when
p = 1 in the AR(2) setting the matrix E[g(Xt )g(Xt )


|Xt−1]
will be singular. However, one could attempt to verify the RE
condition with p > 2. In other words, Lemma IV.2 presents
one method of verifying the RE condition for the AR(2) model,
but others methods may be possible as well.

We prove Lemma IV.2 by showing that the matrix
Cov(g(Xt )|Xt−2) is strictly diagonally dominant. A matrix
B is said to be strictly diagonally dominant if there exists a
constant ω > 0 such that bi,i − �

j �=i |bi, j | ≥ ω for all i , and
the eigenvalues of a symmetric strictly diagonally dominant
matrix are lower bounded by ω. With a sparsity assumption
on A∗, almost all of the off diagonal terms in Cov(Xt ) will
be zero, and the remaining terms can be controlled with the
techniques from Lemma IV.1 and appropriate assumptions on
the size of Rmin and Rmax relative to the sparsity constants
ρ

(p)
m , ρ

(c)
m , ρ

(s)
m .

B. Regularization Examples

In this subsection, we verify Assumptions 2-4 under various
regularization schemes.

Example 1: Element-wise Sparsity Regularization
We first explore sparsity regularization for these processes

that accounts for the sparsity of A∗ natural to many application
domains. For the remainder of the section, we assume

�A∗�0 = s � M2.

Sparse models of network structure encapsulate essential
aspects of many common statistical network models [38],
and have connections to stochastic block models, exponential

random graph models, and various graphical models. We
consider the regularizer

�A�1,1 =
�

i

�

j

|ai, j |

along with its dual

�A�∞,∞ = max
i

max
j

|ai, j |.
To see that � · �1,1 is decomposable we first define the set

S = {(i, j) ∈ {1, . . . , M} × {1, . . . , M K } : A∗
i, j �= 0},

and next define

S = {s ∈ RM×M K : si, j = 0 for all (i, j) �∈ S}.
Then �·�1,1 is decomposable with respect to the pair (S,S⊥).

Note that the optimization problem corresponding to � ·�1,1
regularization is convex and can be solved with a variety of
sparse regularization solvers. Furthermore, it can trivially be
parallelized across the rows of A.

Lemma IV.3. Suppose (Xt )
T
t=1 is generated according to

(II.3) with �A∗�0 = s. Further, assume A∗ is estimated
according to (II.8) using � · �1,1 regularization. Then

1) Assumption 2 is satisfied with

	(S) = 4
√

s.

2) Assumption 3 is satisfied with

μ(1,1) = 4
√

s.

3) Assumption 4 is satisfied with

� 1

T

T�

t=1


t g(Xt )

�∞,∞ ≤ C Rmax

log3(MT )√
T

with probability at least 1− 1
(MT )c for constants C, c > 0

which are independent of M, T and s.

Proof Overview
• To verify Assumption 4, we rely on the fact that the

Poisson rate can never exceed Rmax. This allows us to
bound the largest recorded observation by C log(MT )
with high probability. From here, we are in a position
to use martingale concentration inequalities developed
in [39] to establish the deviation bound.

• Assumptions 2 and 3 are straightforward consequences
of the relation between l1 and l2 norms.

Combining Lemma IV.3, Theorem III.1 and the restricted
eigenvalues results from the previous subsection gives overall
bounds for sparse SEPPs which are applicable in the high-
dimensional setting.

Theorem IV.4. (Learning Rates for l1 Regularization) Sup-
pose (Xt )

T
t=1 follows the SEPP framework of (II.3) and A∗ is

estimated using sparsity regularization.
1) If (Xt )

T
t=1 is generated according to the ARMA(1, 1)

model in (IV.1) then

��A − A∗�2
F ≤ C

R2
max

R2
min min( 1

2 Rmin, κ)2

s log6(MT )

T
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with probability at least 1 − 1
(MT )c for T, M satisfying

T ≥ 128U4s
log M

min( 1
2 Rmin, κ)2

and for constants C, c > 0 which are independent of
M, T and s.

2) If (Xt )
T
t=1 is generated according to the AR(2) model in

(IV.3) then

��A − A∗�2
F ≤ C

R2
max

R2
min r2

ρ

s log6(MT )

T

with probability at least 1 − 1
(MT )c for T, M satisfying

T ≥ 128 U4s
log M

r2
ρ

and for constants C, c > 0 which are independent of M,
T and s.

The mean-squared error bound s log6(MT )
T matches the min-

imax optimal rate for a linear regression model with no
autoregressive component up to log factors [40]. Theorem IV.4
extends results in Hall et al. [22] to ARMA(1,1) and AR(2)
processes.

Example 2: Group Sparsity
Group lasso regularization is a popular tool used to estimate

a sparse parameter where one has prior knowledge on the
structure of the sparsity (see e.g., [41] for more details).
We consider a special case of group lasso regularization where
the groups are the columns of the matrix. Let a.m denote the
mth column vector of a matrix A. Our structured sparsity
assumption is that only sG � M columns of A∗ contain
nonzero entries.

In terms of network structure, this means that only a small
number of hub nodes have influence on other nodes in the
network. To estimate networks of this form, we consider l2
penalization on the columns vectors, followed by l1 penaliza-
tion on the resulting l2 norms. In other words, we have

�A�G = �A
�1,2 =
�

m

�a.m�2.

The dual of this norm is

�A�G∗ = �A
�∞,2 = max
m

�a.m�2.

Let

SG = {i : a∗
.i �= 0}.

Then � · �G is decomposable with respect to the subspaces

SG = {A : a. j = 0 for all j �∈ SG }
and

S⊥
G = {A : a. j = 0 for all j ∈ SG}.

We show Assumptions 2-4 hold in Lemma IV.5 below.

Lemma IV.5. Suppose (Xt )
T
t=1 is generated according to

(II.3) where only sG columns of A∗ contain nonzero entries.

Further, assume A∗ is estimated according to (II.8) using �·�G

regularization. Then

1) Assumption 2 is satisfied with

	(SG) = 4
√

sG .

2) Assumption 3 is satisfied with

μG = 16sG .

3) Assumption 4 is satisfied with

� 1

T

T�

t=1


t g(Xt )

�G∗ ≤ C Rmax log2(MT )

�
M

T

with probability at least 1− 1
(MT )c for constants C, c > 0

which are independent of M, T and sG .

Proof Overview
• For Assumption 4 we construct a high probability bound

on the l2 norm of each column of our noise matrix and
take a union bound over all the columns to get a final
bound on the � · �∞,2 norm. To bound the norm of
each individual column, we rely on [42] which provides
martingale concentration inequalities for 2-smooth norms.

• For Assumption 3 we derive an error row sparsity con-
stant which depends only on sG rather than M . The �·�2,1
norm can be large relative to the Frobenius norm in cases
where the matrix is row-dense. In this case, the l1 norm
of each row can be on the order of

√
M larger than the l2

norm. However, we only need to derive a compatibility
constant on the cone

BG = {B ∈ R
M×M K : �BSG

⊥�G ≤ 3�BSG
�G}.

Since elements of SG has at most sG nonzero entries in
each row, we can think of all matrices in the cone BG

as being “almost row sparse” and so the � · �2,1 norm
should not be O(

√
M) larger than the Frobenius norm

on the cone.
• Assumption 2 follows from the relationship between the

l1 and l2 norms.

Combining Lemma IV.5, Theorem III.1 and the restricted
eigenvalue conditions from the previous subsection gives the
following result.

Theorem IV.6. (Learning Rates for Group Lasso Regular-
ization)

Suppose (Xt )
T
t=1 follows the SEPP framework of (II.3) and

A∗ is estimated using column group lasso regularization.

1) If (Xt )
T
t=1 is generated according to the ARMA(1, 1)

model in (IV.1) then

��A − A∗�2
F ≤ C

R2
min min( 1

2 Rmin, κ)2

sG M log4(MT )

T

with probability at least 1 − 1
(MT )c for T, M satisfying

T ≥ 128U4s2
G

log M

min( 1
2 Rmin, κ)2
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and for constants C, c > 0 which are independent of
M, T and sG .

2) If (Xt )
T
t=1 is generated according to the AR(2) model in

(IV.3) then

��A − A∗�2
F ≤ C

R2
min r2

ρ

sG M log4(MT )

T

with probability at least 1 − 1
(MT )c for T, M satisfying

T ≥ 128U4s2
G

log M

r2
ρ

and for constants C, c > 0 which are independent of
M, T and sG .

Ignoring log factors, this result matches the minimax opti-
mal rate for a linear regression model with no autoregressive
aspects [43].

Example 3: Low-Rank Regularization
Estimation of high-dimensional but low-rank matrices is

a widely studied problem with numerous applications [35],
[44]–[47]. Low-rank models can be seen as a generalization
of sparse models, where the matrix is sparse in an unknown
basis. A standard technique to estimate a low-rank matrix is
to take a convex relaxation of an l0 penalty on the singular
values [47]: the nuclear norm penalty

�A�∗ =
M�

i=1

σi (A),

where σi (A) denotes the i th singular value of A. The dual to
the nuclear norm is the operator norm

�A�op = sup
�x�2=1

�Ax�2.

As discussed in [34], the nuclear norm is decomposable with
respect to the subspaces

W = {A ∈ R
M×M K :

row(A) ⊆ row(A∗) and col(A) ⊆ col(A∗)}
and

W⊥ = {A ∈ R
M×M K :
row(A) ⊆ row(A∗)⊥and col(A) ⊆ col(A∗)⊥}

where row(A) and col(A) denote the row and column spaces
of A respectively. Unlike the previous two examples, here
W �= W .

In this low-rank setup, there is no limitation on the number
of nodes which can influence a given node. This introduces
challenges in establishing Assumption 3, which guarantees
near row sparsity of the error. In order to get around this,
we impose a technical assumption on �A∗�2,1 in Lemma IV.7.
An area of interest for future work is to examine whether our
estimation procedure is flawed when one node can have many
nodes influence it, or whether the need for this assumption is
an artifact of our analysis.

Lemma IV.7. Suppose (Xt )
T
t=1 is generated according to

(II.3) with rank(A∗) = r and �A∗�2
2,1 = D

√
M for a universal

constant D. Further, assume A∗ is estimated according to
(II.8) over the ball {A : �A�2

2,1 ≤ D
√

M} using nuclear norm
regularization. Then

1) Assumption 2 is satisfied with

	(W) = √
2r .

2) Assumption 3 is satisfied with

μ∗ = 2D
√

M.

3) Assumption 4 is satisfied with

� 1

T

T�

t=1


t g(Xt )

�op ≤ C log4(MT )

�
M

T

with probability at least 1− 1
(MT )c for constants C, c > 0

which are independent of M, T and r .

Proof Overview
• The main challenge in Lemma IV.7 comes in the proof of

the deviation bound condition, which depends on the con-
centration properties of vector-valued martingales. The
concentration properties of 2-smooth norms was studied
in a number of works, including [48], [49]. We leverage
recent work in [50] which extends the concentration
results for 2-smooth norms to operator norms.

• Assumption 3 follows from assuming �A∗�2,1 and ��A�2,1
are on the order of

√
M . Without this assumption,

we could potentially have μ∗ = O(M). This would give
us a final bound in Corollary IV.8 which is only applicable
when T ≥ M2, so this technical assumption is crucial in
constructing a meaningful bound.

• The subspace compatibility constant in Assumption 2 was
shown in [44]. In the sparsity case, this condition is trivial
because S = S and thus �S is known to lie in a subspace
where every element is s-sparse. The condition is more
subtle in the nuclear norm regularization case because
W = W if and only if A∗ is symmetric. We do not
assume symmetry of A∗ so �W need not lie in the
subspace W where each element has rank at most r .
However, [44] shows that W only contains matrices of
rank at most 2r .

Combining Lemma IV.7, Theorem III.1 and the restricted
eigenvalues results gives the following Theorem.

Theorem IV.8. (Learning Rates for Nuclear Norm Regular-
ization)

Suppose (Xt )
T
t=1 follows the SEPP framework of (II.3) and

A∗ is estimated using nuclear norm regularization over the
ball {A : �A�2

2,1 ≤ D
√

M}.
1) If (Xt )

T
t=1 is generated according to the ARMA(1, 1)

model in (IV.1) then

��A − A∗�2
F ≤ C

R2
min min( 1

2 Rmin, κ)2

r M log8(MT )

T

with probability at least 1 − 1
(MT )c for T, M satisfying

T ≥ 128U4M
log M

min( 1
2 Rmin, κ)2
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and for constants C, c > 0 which are independent of
M, T and r .

2) If (Xt )
T
t=1 is generated according to the AR(2) model in

(IV.3) then

��A − A∗�2
F ≤ C

R2
min r2

ρ

r M log8(MT )

T

with probability at least 1 − 1
(MT )c for T, M satisfying

T ≥ 128U4M
log M

r2
ρ

and for constants C, c > 0 which are independent of
M, T and r .

Once again the mean-squared error bound r M log8(MT )
T

matches the minimax optimal rate for a linear regression model
up to log factors [51].

V. NUMERICAL EXPERIMENTS

We validate our methodology and theory using a simulation
study and real data examples. The focus of the simulation
study is to confirm that the rates in mean-squared error in
terms of s, r , T and κ scale as the theory predicts. We generate
data according to the ARMA(1, 1) model from IV.1.

Our focus with real data experiments is to demonstrate that
the models we analyze are sufficiently complex to capture real-
world phenomena and enhance prediction performance relative
to naive models. Others have successfully used more complex,
difficult to analyze models (cf., [17], [18]) which are similar
in spirit to those analyzed here. Our claim is not that our
approach leads to uniformly better empirical performance than
previous methods, but rather that our models capture essential
elements of all these approaches and hence our theoretical
work provides insights into a variety of approaches.

Our first real data example shows that our model and
estimation procedure determines interactions among shooting
events across different communities of Chicago that obeys
sensible spatial structure (even though the algorithm does not
use any spatial information). Our second real data example
looks at neuron firing patterns in the brain of a rat and shows
that our model can differentiate between the firing patterns
during a sleep period and the patterns during a wake period.
Finally, we examine a data set consisting of articles posted
by different news websites and we try to determine influences
between the sites using a variety of different regularization
techniques. We implement the estimation procedure in (II.8)
using the SpaRSA algorithm from [52].

A. Simulation Study

We generate data according to (IV.1) with ν = 0, M = 50,
Ũ = 6, α = .25 and varying values for T and s. Recall that
ν controls the background rate, M is the number of nodes, Ũ
is the clipping threshold, α is the memory of the process in
(IV.1), T is the number of time steps observed, and s is the
number of edges in the network.

Each time we generate a matrix, we randomly select s
entries to be nonzero, and assign each value uniformly in

Fig. 2. (a) shows MSE vs T for varying values of s, while (b) shows MSE
vs s for varying values of T . Plots agree with theory which suggests that
MSE scales linearly in s and 1

T . Median of 100 trials are shown, and error
bars denote the standard deviation.

[−.7, .3]. The sparsity ranges between 10 and 50. With these
parameters, our process is usually stable on its own, and
only occasionally relies on the clipping function to dampen
the observations. Even at s = 50, only around 1% of the
observations exceed 6, and the clipping percentage is even
lower for smaller s. For each choice of s, T , we run 100 trials
with λ = .1/

√
T . In the i trial we form a ground truth matrix

A∗
i , compute Âi , and measure the mean squared error (MSE)

as �A∗
i − Âi�2

F .
In Figure 2(a), we plot MSE vs T for several different values

of s, and in Figure 2(b) we plot MSE vs s for several values
of T . The plots agree with our theory, which suggests that the
error scales linearly in s and 1

T .
Next, instead of assuming that A∗ only has s non-zero

entries, we assume that A∗ has rank r , and measure MSE
as a function of r . We hold the remaining parameters the
same. To generate a rank r matrix A∗, we randomly generate
a M ×r matrix and multiply it by a randomly generated r ×M
matrix where the entries of both matrices are uniformly drawn
from [−.7, .3]. We then normalize the resulting matrix so that
amax is approximately .3. For all choices of rank considered,

less than 5% of observations are clipped. We set λ = .1
�

M
T

as guided by our theory, run 100 trials for each (r, T ) pair,
and plot the median in Figure 3. The simulations agree with
Lemma IV.7 which suggests that the MSE should scale linearly
in r and 1

T .
We now examine the relationship between amax, our the-

oretical MSE, and simulated MSE. For the remainder of the
section fix Ũ = 6 and α = 0 and T = 400. Recall from
Figure 1 that there is a stark phase transition where κ goes
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Fig. 3. (a) shows MSE vs T for varying values of r , while (b) shows MSE
vs r for varying values of T . Plots agree with theory which suggests that
MSE scales linearly in r and 1

T . Median of 100 trials are shown.

Fig. 4. In blue, κ−2 as a function of amax. In orange, the fraction of 50 trials
which have MSE above 1 for a block matrix design strategy and a low-rank
matrix design strategy. Our theoretical bound on the MSE scales with κ−2,
suggesting stark phase transitions in the MSE which are confirmed in the
simulated results. The block matrices correspond to more stimulatory networks
than the low-rank ones, and therefore align more closely with our worst case
bounds.

from reasonably large to minuscule. For Ũ = 6, this transition
occurs between amax = .3 and amax = .4. Our MSE bound
scales with κ−2, so this phase transition controls where our
bound is reasonably small.

To get a sense of how tight the bound is, we consider two
different methods to generate a 50×50 matrix A∗. The first is
a block design, where A∗ is zero outside of five 10×10 blocks
on the diagonal. Within the blocks, each row has five nonzero
entries picked at random with values equal to amax

5 . Matrices
with this structure have strong feedback loops, where large
observations from one node stimulate other nodes which are
likely to feedback to the original node. In other words, with
this block design method it is likely that many observations
will actually be drawn close to the maximum possible rate
Rmax, so we expect the MSE to align closely with our

theoretical bound. We estimate A∗ using l1 regularization, for
varying values of amax.

As a second method, we consider a low-rank design and
estimate A∗ using nuclear norm regularization. We choose
the first two rows of A∗ to be orthogonal, both with row
sums equal to amax. We then let each remaining row be a
random convex combination of the first two rows. In this case,
feedback loops are less of an issue; if one node has a large
observation, the nodes it stimulates are less likely to have
strong connections feeding back to the original node. Since
this design method is not particularly stimulatory, we expect
that most observations will not be drawn close to the maximum
rate Rmax. Our theoretical bound is potentially loose in this
case for the following reason. Our bound on κ which captures
the amount of clipping is worst case based on the size of the
coefficients of A∗, but does not take into account the structure
of A∗. If the coefficients of A∗ are large but are structured
such that there aren’t a lot of feedback loops then our bound
on κ will be loose.

We randomly generate 50 different A∗ over various amax
for both design choices and then evaluate their efficiency by
plotting the fraction of trials for which the MSE is above one.
The results are shown in Figure 4. The simulated results also
exhibit strong phase transitions, with the fraction of accurate
trials shifting from one to zero with small changes in amax.
This suggests that our theoretical results capture a real phe-
nomenon of our model. In the block case, the phase transition
occurs almost exactly where predicted by the MSE, whereas
in the low-rank case there is a small lag in the phase transition.
In other words, while our theoretical results are fairly tight for
very stimulatory network structures, there appears to be some
flexibility for networks with weaker feedback loops.

Finally, we consider the block matrix design under a wide
range of Ũ . We consider Ũ between 3 and 30, and amax
between 0 and .6 in increments of .02. For each (amax, Ũ)
pair, we generate 20 matrices according to the block matrix
design strategy outlined above and estimate �A via sparsity
regularization. In Figure 5 we plot a heat map displaying the
fraction of trials for with the MSE is below one. The red
line shows the κ = .01 contour, so Lemma IV.3 suggests
our model will be hard to learn above the boundary line.
Figure 5 generally resembles the heat map displaying values
of κ in Figure 1, suggesting that the role of κ in our theory
reflects a true phenomenon that when amax is sufficiently large
and clipping is frequent, then the model becomes difficult to
learn.

B. Real Data Example – Chicago Crime

A number of studies have used various self-exciting point
processes to predict crime, including [3], [53], [54]. We test
our model on a data set [55] consisting of burglaries in
Chicago since 2004, broken down by the M = 77 community
areas in the city. In [17], Adams and Linderman fit self-
exciting processes to the Chicago homicide data broken down
by community area and performed clustering on the areas as
we do below. We estimate the network based on the data from
January 2004 to August 2010 and test it on the data from
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Fig. 5. Heat map displaying the fraction of trials for which the MSE is below
one for different (amax, Ũ) pairs. Red line shows κ = .01 contour. Above
this line our theory predicts difficulty in learning, agreeing with the heat map
which shows inaccurate recovery of A∗ for (amax, Ũ) pairs above the line.
For each (amax, Ũ ) pair, we run 20 trials with a block matrix design.

Fig. 6. Clusters learned from crime data with a half-day time discretization.
The clusters are overlaid on a map of community areas in Chicago. The data
contained no geospatial information, but clusters show geographical patterns.

September 2010 to March 2017. To test results, we compare
the log-likelihood of events using our learned matrix on the
test set data, with that for a constant Poisson process. This
gives approximately 600 time periods for both our training
and test sets. We set λ = .1/

√
T using our theory as a guide.

We show results for a half-day time discretization period, with
Ũ = 7 and α = .2.

The test set log-likelihood of our learned matrix shows an
improvement over the test set log-likelihood for a learned
constant process, where λt,m = λm for all t (−6.62 × 105

compared to −1.09 × 106).
To examine the structure of our learned matrix, we treat

the positive coefficients of the matrix as edges of the adja-
cency matrix of a graph. We then perform spectral clustering
with four clusters. The results are shown in Figure 6, with
colors indicating cluster membership. We note that our data
contains no information about the geospatial location of the
areas aside from index (not location) of the community area.
However, there are clear geographic patterns in the clusters,
providing some validation to the estimated influences between
communities.

Finally, we test whether modeling these crime patterns as
a multi-dimensional point processes leads to stronger results

TABLE I

DIFFERENCE BETWEEN LOG-LIKELIHOOD OF MULTIVARIATE
PROCESS AND UNIVARIATE PROCESS

than modeling the patterns as a collection of independent
univariate point processes, where

log(λt+1,m) = νm + a∗
m min(Xt,m, Ũ ) + α log(λt,m).

Specifically, we compare finding �A as in (II.8) with choosing
�A to be the solution to the optimization problem in (II.8)
over the set of all diagonal matrices. We then perform the
log-likelihood analysis described above for α varying from
0 to .6 in increments of .2 and for the time-discretization
period varying from half a day to three days in increments
of half a day. The results are shown in Table I. Note that the
multivariate model outperforms the univariate one whenever
the discretization period is at least a full day but does worse
for the half day discretization period.

C. Real Data Example – Spike Train Data

SEPPs have been widely used in neuroscience to describe
neuron spike train data [14], [30], [31], [56]. In this
section, we analyze a multi-neuron spike train dataset
from [57] and [58]. The dataset consists of spike trains
recorded from 51 neurons in the brain of a rat. The recordings
were divided into a wake period and a sleep period. Using the
data from the first half of the wake period, we learn a matrix
Awake using equation (IV.1), a 100ms discretization period,
α = .7 and Ũ = 5. We then follow the same process to learn
Asleep. We get a sense of the structure of the matrices Awake
and Asleep in Figure 7. We note that connections are much
stronger during the wake period, during which there is more
frequent neural firing.

In previous work [36] Kelly et al. use a similar SEPP
to analyze neural spikes and discuss the significance of the
time discretization period in more depth. In particular, they
conclude that while models at this discretization length may
have strong predictive power, the discretization period is
sufficiently large that the connections learned are not direct
physical effects. In other words, if the connection between
neuron A and neuron B is negative, this suggests that neuron
B is less likely to fire in a 100ms interval after neuron A
fires. However, there could be a complex chain of interactions
causing this effect, and it does not mean there is a direct
physical connection between neuron A and neuron B.

To validate Awake, we compute the log-likelihood of events
for the second half of the wake period using both Awake
and Asleep as the ground truth matrix. We find log p(Xwake|
Âwake) = −6.6×104 while log p(Xsleep| Âwake) = −7.4×104.
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Fig. 7. (a) shows Awake matrix charting estimated relationships between
neurons in a rat’s brain during a wake period, while (b) shows Asleep matrix
charting estimated relationships between neurons in a rat’s brain during a
sleep period.

Following the same process for Asleep, we find that
log p(Xsleep| Âsleep) = −2.34 × 105 while log p(Xwake|
Âsleep) = −3.04×105. This suggests that our model is capable
of differentiating firing patterns in different sleep states. The
log-likelihood of events for a constant process was orders of
magnitude smaller in both cases.

D. Real Data Example – Memetracker Data

As a final example, we consider a data set [59] which
consists of metadata for a collection news articles and blog
posts. We only consider the time and website from which
each post occurs but omit all other data such as the content of
the post and other websites to which the post links. Further,
we consider only articles posted by 198 popular news sites
from http://www.memetracker.org/lag.html. Low-rank models
have been applied in social network settings in a number
of different works [6], [60], [61]; in particular, the work [6]
proposes low-rank regularization of a point process model on
this same data set.

To test the model, we collect all articles posted by 198
popular new websites during October 2008. Using a one hour
discretization period, we divide the month into a training set
and a test set, giving T = 500 training periods and 500 test
periods. We train our model using the following regularization
techniques. We perform the l1 regularization and nuclear norm
regularization schemes described in Section IV-B, as well as
a low-rank plus sparse model where we use the regularizer

� · �R = � · �1,1 + � · �∗.

Fig. 8. Log-likelihood of events on test set for matricies learned using
memetracker data set under a variety of structure assumptions. Data set
consists of timestamps for articles posted by 198 popular news websites and
blogs during October 2008.

This last model is optimized using alternating descent. Finally,
we learn a multi-dimensional model with no regularization,
where we simply use the negative log-likelihood as our loss
function, and a one-dimensional model where all interactions
between different nodes are set to zero. The results are shown
in Figure 8. The low-rank model performs best, followed by
the low-rank plus sparse model, suggesting that the interac-
tions between websites exhibit some low-rank behavior.

VI. CONNECTIONS TO HAWKES PROCESS

In this section, we observe that the model in (II.3) can
be seen as a discretized version of the multivariate Hawkes
process, in which there is much long-standing and recent
interest (e.g., [6], [23], [37], [62]–[65]). By formulating our
discrete-time model in this manner we aim to highlight the
connections between the two classes of models. There are
advantages to analyzing point process models from both the
continuous and discrete perspective. Some advantages of the
discrete perspective include:

1) Real world data comes inherently discretized. In some
cases, e.g., social media posts, one might record data
accurately up to very fine time windows. However,
in other problems, the data collection process forces
a coarse discretization. For example in [20], which
used Hawkes processes to model civilian deaths in Iraq,
reliable data was only obtained for the day on which
attacks occurred.

2) In many works the authors discuss continuous Hawkes
models, but their algorithms work with discretized data
for computational efficiency. Examples include [16],
[20], [30]. This provides additional motivation for our
decision to study the ARMA(1, 1) model because its
continuous version is one of the most widely studied
types of Hawkes process.

A. Continuous Hawkes

In a multivariate Hawkes process, point process observations
are drawn using an intensity function λ(Xτ ), where Xτ is the
collection of all events up to (continuous) time τ . Each event
i is associated with two components: (τi , mi ), where τi is the
time of the event and mi is the node or channel associated with
the event. Nτ denotes the number of events before time τ .
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We model the log-linear Hawkes process intensity at
node m as1

log λ(c)
m (Xτ ) = νm +

Nτ�

i=1

hm,mi (τ − τi ), (VI.1)

where the (c) superscript denotes continuous-time.
Here each function hm,m�(τ ) measures the influence of node

m� on node m after τ seconds since the event on m�. This
model is standard in the point process literature. We write
each of these functions as a linear combination of the basis
functions φ1(τ ), . . . , φK (τ ):

hm,m�(τ ) =
K�

k=1

a∗
m,m�,kφk(τ ), (VI.2)

yielding

log λ(c)
m (τ ) = νm +

Nτ�

i=1

K�

k=1

a∗
m,mi ,kφk(τ − τi )

= νm +
M�

m�=1

a∗
m,m�

� �

i<Nτ :
mi =m�

K�

k=1

φk(τ − τi )
�

= νm +
M�

m�=1

K�

k=1

a∗
m,m�,kg(c)

m,k(Xτ ), (VI.3)

where

g(c)
m,k(Xτ ) :=

�

i<Nτ :
mi=m

φk(τ − τi ).

Vectorizing across nodes and letting

λ(c)(Xτ ) := [λ(c)
1 (Xτ ), · · · , λ

(c)
M (Xτ )]
 ∈ R

M+
ν := [ν1, · · · , νM ]
 ∈ R

M

g(c)(Xτ ) := (g(c)
m,k(Xτ )) ∈ R

M K

A∗ := (am,m�,k) ∈ R
M×M K ,

we have

log λ(c)(Xτ ) = ν + A∗g(c)(Xτ )

which exhibits the same general form as (II.3).
In order to formalize the connection between the multivari-

ate Hawkes process in (VI.3) and the SEPP in (II.3) we first
describe our sampling process and the Hawkes and Poisson
log likelihoods needed to prove Proposition 1: The Hawkes
process can be discretized by sampling λ(c)(Xτ ) at τ = t�
for some sampling period � > 0 and letting

Xt,m =
Nt��

i=N(t−1)�+1

Im=mi (VI.4)

for t = 1, . . . , T .
Here IE is the indicator function which returns 1 if E is true

and 0 if E is false and Xt,m is the number of events on node
m during the sampling interval [(t − 1)�, t�). Overloading

1λ
(c)
m (Xτ ) would be more precisely written as λ

(c)
m (τ ;Xτ ); we let the

dependence on τ be understood for simplicity of presentation.

notation somewhat, let Xt = {Xs,m}s=1,...,tm=1,...,M be the
history of event counts up to time t . The log-likelihood of
the original Hawkes process observations up to time T � is

H (XT �|{λ(c)
m }m) =

NT ��

i=1

log λ(c)
mi

(τi ) −
M�

m=1

� T �

0
λ(c)

m (τ )dτ

=
M�

m=1

NT �m.�

i=1

log λ(c)
mi

(τi ) −
� T �

0
λ(c)

m (τ )dτ.

Further note that if Xt,m ∼ Poisson(λt,m), then the Poisson
log likelihood is proportional to

p(XT )|{λm(Xt )}t,m) =
M�

m=1

T�

t=1

[Xt,m log(λm(Xt )) − λm(Xt )].

We consider in Proposition 1 a SEPP with the intensity

λt,m = �λ(c)
m (X�t ) ≡ �λ(c)

m (�t;X�t ), (VI.5)

where the last equality makes the sampling time explicit.
We now present a proposition which formalizes the connec-
tions between the SEPP and the log-linear Hawkes process.

Proposition 1. The likelihood of the discretized multivariate
Hawkes data in (VI.4) can be approximated by the likelihood
of the Poisson autoregressive model (II.3) with inten-
sity (VI.5), modulo terms independent of the unknown λ(c),
where the approximation error depends on the sampling
period �.

This proposition suggests that the models and analysis we
develop for SEPPs also provides insight into related Hawkes
process models provided that the sampling period � is suffi-
ciently small.

VII. CONCLUSION

The proposed saturated SEPP allows us to analyze statistical
learning rates for a large class of point processes, including
discretized Hawkes processes, with long-range memory and
saturation or clipping effects common in real-world systems.
The analysis presented in this paper addresses instability
issues present in prior works and incorporates a wide variety
of structural assumptions on the ground truth processes by
allowing for arbitrary decomposable regularizers. The pro-
posed bounds provide novel insight not only into sample
complexity bounds, but also into phase transition boundaries
dictated by stability and saturation effects that are supported
by simulation results. In addition, experiments on data from
neuroscience, criminology, and social media suggest that the
models considered in this paper exhibit sufficient complexity
to model real-world phenomena.

APPENDIX

A. Proof of Theorem III.1

Theorem III.1 is the combination of results from
[22] and [34]. We give a proof for the sake of completeness
but claim no originality of techniques. For the first part of the
proof, we follow Theorem 1 from [34]. By the definition of
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�A and properties of Bregman divergence for strongly convex
functions, we have

Rmin

2T

�

m

�

t

(�

m.g(Xt ))

2

≤ 1

T

 
 
�

m

�

t


t,m�

m.g(Xt )

 
 (A.1)

+ λ(�A∗�R − ��A�R) (A.2)

where Rmin is a strong convexity parameter for ex on the
domain x ∈ [Rmin, Rmax]. Next note that

�

m

�

t


t,m�

m.g(Xt )

=
�

m

�

m�
�m,m�

�

t

Xt,m�
t,m

= �,
�

t


t g(Xt )

�

≤ ���R�
�

t


t g(Xt )

�R∗ .

Thus, assuming λ/2 > 1
T ��

t 
t g(Xt )

�R∗ we have

1

T

 
 
 
 
 

�

m

�

t


t,m�

m.g(Xt )

 
 
 
 
 
+ λ(�A∗�R − ��A�R)

≤ λ

2
���R + λ�A∗�R − λ��A�R. (A.3)

Then

��A�R = �A∗ + ��R = �A∗ + �M⊥ + �M�R.

Since R is decomposable with respect to the subspaces
(M,M⊥

), we have

��A�R ≥ �A∗�R + ��
M

⊥�R − ��M�R.

Thus
λ

2
���R + λ�A∗�R − λ��A�R
≤ 3λ

2
��M�R − λ

2
��M⊥�R

≤ 3λ

2
��M�R. (A.4)

Recalling that 	(M) is the subspace compatibility constant,
we have

��M�R ≤ 	(M)��M�F ≤ 	(M)���F .

It follows that
λ

2
���R + λ�A∗�R − λ��A�R ≤ 3λ

2
	(M)���F .

Let ���2
T = 1

T

�
m

�
t (�


m.g(Xt ))
2 and therefore

���2
T ≤ 3λ

Rmin
	(M)���F .

From here, we reduce the lower bound into the restricted
eigenvalue condition. For the remainder of the proof all expec-
tations are conditioned on Xt−p and we use the shorthand
�

m,t∈T to denote
�

t∈T
�M

m=1. Denote the subsets

BR = {B ∈ R
M×M K : �BM⊥�R ≤ 3�BM�R}

and

B�
R = {B ∈ BR : �B�F = 1}.

Note that Equation (A.4) implies that � ∈ BR. Let T =
{p, 2 p, . . . , T } so |T |/|T | = 1

p (here we assume T
p is an

integer for simplicity). By Assumption 1 we have that for any
B ∈ BR,

���2
T ≥ 1

T

�

m,t∈T
�


m.E[g(Xt )g(Xt )

]�m.

− 1

T

�

m,t∈T
(b


m.g(Xt ))
2 − E[(b


m.g(Xt ))
2]

≥ ω

p
���2

F

− 1

T

�

m,t∈T
(b


m.g(Xt ))
2 − E[(b


m.g(Xt ))
2].

We want to show that for any B ∈ BR,

1

T

�

m,t∈T
(b


m.g(Xt ))
2 − E[(b


m.g(Xt ))
2] ≤ ω���2

F

2 p
(A.5)

with high probability, and we note that it suffices to show this
for all B ∈ B�

R.
For the remainder of the proof we conditional all expecta-

tions on Xt−p and define the matrix G ∈ R
M×M as follows:

G := 1

T

�

t∈T
(g(Xt )g(Xt )

T − E[g(Xt )g(Xt )
T ]).

Following the definition of G, and denoting each entry Gm,m� ,

sup
B∈B�

R

1

T

�

m,t∈T
(b


m.g(Xt ))
2 − E

�
(b


m.g(Xt ))
2|�

= sup
B∈B�

R

M�

m=1

b

m.Gbm.

≤ sup
B∈B�

R
�B�2

2,1 max
m,m� |Gm,m� |.

Recall that supB∈B�
R �B�2

2,1 ≤ μR by Assumption 3. Hence

sup
B∈B�

R

1

T

�

m,t∈T
(b


m.g(Xt ))
2 − E

�
(b


m.g(Xt ))
2�

≤ μR max
m,m� |Gm,m� |.

Note that each entry Gm,m� is a martingale and |Gm,m� | ≤ 2U2.
Therefore we can apply the Azuma-Hoeffding inequality [66].
For completeness, we state the Azuma-Hoeffding inequality
as Theorem A.5 in Section I. If we let

Yn := 1

T

n�

t=0

(g(Xt )g(Xt )
T − E[g(Xt )g(Xt )

T |Xt−p]),

where n = 0, 1, 2, .., |T |, and we set t = ω
2μR p and cn = 2U 2

T
as in Theorem A.5 in Appendix I, we have

P
�|Gm,m� | ≥ ω

2μR p

� ≤ 2 exp

�

− Tω2

32U4 p2μ2
R

�

.
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Applying a union bound,

P
�

max
m,m� |Gm,m� | ≥ ω

2μR p

� ≤ 2M2 exp

�

− T ω2

32U4 p2μ2
R

�

.

Hence if we set

T >
128 U4 p2μ2

R log M

ω2 ,

(A.5) holds with probability at least

1 − 2

M2 ,

guaranteeing that ���2
T ≥ ω

2p ���2
F with this same probability.

Putting everything together, we have

���2
F ≤ 36 p	(M)2λ2

R2
minω

2

with probability at least 1 − 2
M2 for

T ≥ 128 p2U4μ2
R log M

ω2 .

B. Proof of Lemma IV.1

Before we prove Lemma IV.1, we first need the following
supporting lemma.

Lemma A.1. Let Z = min(�λ� , Ũ ). Define the random
variables X ∼ Poisson(λ), X = min(X , Ũ ) and

Y =
�

0 if X < Z

1 if X ≥ Z .

Then

Var(Y ) ≤ Var(X).

Proof
We write

X = (Y + Z) + (X − Y − Z).

Since Z is a constant we have

Var(X) = Var(Y ) + Var(X − Y ) + 2Cov(Y, X − Y )

and it suffices to show Cov(Y, X − Y ) ≥ 0. Conditioning on
Y gives

E
�
(Y − E[Y ])(X − Y − E[X − Y ])�
= p(Y = 1)(1 − E[Y ])EY=1[X − Y − E[X − Y ]]

+ p(Y = 0)(−E[Y ])EY=0[X − Y − E[X − Y ]] (A.6)

Now observe that Y = 1 implies X − Y ≥ Z − 1 (where we
rely on the fact that X and Z are both integers) while Y = 0
implies X − Y ≤ Z − 1; then

E[X − Y |Y = 1] ≥ E[X − Y ] (A.7)

and

E[X − Y |Y = 0] ≤ E[X − Y ]. (A.8)

We argue that both terms in the sum in (A.6) are non-negative.
For the first term, we have

EX,Y |Y=1
�
X − Y − E[X − Y ]�

= EX,Y |Y=1[X − Y ] − E[X − Y ] ≥ 0

by (A.7) and

EX,Y |Y=0
�
X − Y − E[X − Y ]�

= EX,Y |Y=0[X − Y ] − E[X − Y ] ≤ 0

by (A.8). Finally note that E[Y ] ∈ (0, 1) so that both
terms in (A.6) are indeed non-negative, and therefore
Cov(Y, X − Y ) ≥ 0 as claimed.

We now prove Lemma IV.1. Note that

Cov(min(Xt,m, Ũ), min(Xt,m�, Ũ )|Xt−1)) = 0

for m �= m�. We have

E[min(Xt , Ũ) min(Xt , Ũ)
|Xt−1]
= E[min(Xt , Ũ)|Xt−1]E[min(Xt , Ũ)|Xt−1]


+ Diag(Var(min(Xt , Ũ)|Xt−1))

where the first matrix is positive semi-definite because it is the
outer product of a vector with itself. Thus, to come up with a
lower bound for our original matrix, we just need to lower
bound the smallest element of Var(min(Xt , Ũ )|Xt−1). This
amounts to lower bounding the variance of min(Xλ, Ũ) where
Xλ is a Poisson random variable with mean λ ∈ [Rmin, Rmax].
Define

Yλ =
�

0 if min(Xλ, Ũ ) < min(�λ� , Ũ)

1 if min(Xλ, Ũ ) ≥ min(�λ� , Ũ).

By Lemma A.1, Var(min(Xλ, Ũ )) ≥ Var(Yλ) so our problem
reduces to lower bounding the variance of Yλ. We argue that

Var(Yλ) ≥ min(Var(YRmin), Var(YRmax))

by considering two cases. When analyzing these cases, we use
the fact that Var(Yλ) will be minimized when the probability
of outcome (0) is either maximized or minimized. We take
Rmin ≤ 1

5 to make the exposition clearer. At the end of the
proof we discuss the Rmin > 1

5 scenario which is virtually
identical.

Case 1 (λ ∈ [Rmin, Ũ ) Where Ũ May be Either Greater
Than or Less Than Rmax) In this scenario

Yλ =
�

0 if Xλ < �λ�
1 if Xλ ≥ �λ� .

We claim Var(YRmin) ≤ Var(Yλ) for λ ∈ [Rmin, Ũ). To do this,
we look at two subcases.

First, if 1 ≤ λ ≤ Ũ , then basic properties of the median of
the Poisson distribution imply that the probability of outcome
(0) will be between 1

5 and 4
5 and so Var(Yλ) ≥ 4

25 .
For the second case where Rmin ≤ λ < 1, outcome (0)

corresponds to

P (X = 0|X ∼ Poisson(λ)) = exp(−λ)

≤ exp(−Rmin).
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Since Rmin ≤ 1
5 we get that exp(−Rmin) > 4

5 . Combining the
two cases, we have concluded that Var(Yλ) is minimized on
λ ∈ [Rmin, Ũ ] at λ = Rmin. Now, when λ = Rmin,

Var(Yλ) = exp(−Rmin)(1 − exp(−Rmin)).

Since

f (x) = e−x(1 − e−x)

x

decreases monotonically on the interval (0, 1
5 ], we have

min
x∈(0, 1

5 ]
f (x) ≥ f

�
1

5

�

≥ 1

2
.

Using the fact that Rmin ∈ (0, 1
5 ] we conclude

Var(YRmin) = exp(−Rmin)(1 − exp(−Rmin))

≥ 1

2
Rmin. (A.9)

Case 2 (λ ∈ [Ũ, Rmax]) Next we consider the variance when
λ ≥ Ũ . By the same reasoning as in Case 1, outcome (0) can
have probability no larger than 4

5 . It remains to consider when
outcome (1) can have probability larger than 4

5 . It is clear
that for λ ∈ [Ũ, Rmax], outcome (1) will be maximized for
λ = Rmax. When λ = Rmax, we directly compute the variance
as

Var(YRmax) := κ

=
Ũ−1�

i=0

Ri
max exp−Rmax

i ! (1 −
Ũ−1�

i=0

Ri
max exp−Rmax

i ! )

(A.10)

Combining Case 1 and Case 2, we get that

Var(Yλ) ≥ min (Var(Rmin), Var(Rmax))

and combining Equations (A.9) and (A.10) gives the final
result.

If Rmin ≥ 1
5 an identical argument shows that for Case 1

where λ ∈ [Rmin, Ũ), Var(Yλ) ≥ 4
25 and for Case 2 where

λ ∈ [Ũ , Rmax], Var(Yλ) ≥ κ . Hence, a lower bound
on Var(Yλ) covering all possible values of Rmin would be
min( 1

2 Rmin, κ, 4
25 ). In main body of the paper we present

the bound for the Rmin ≤ 1
5 scenario in order to make the

statement more interpretable.

C. Proof of Lemma IV.2

Recall that the AR(2) model is a special case of (II.3) with
φ1[t] = I{t=1} and φ2[t] = I{t=2}. With these choices of basis
functions,

g(Xt ) = [min(X1, Ũ ), min(X2, Ũ)]
.

A computation shows that if we choose to condition on Xt−1 as
in the proof of Lemma IV.1 we get a singular matrix. However,
Assumption 1 allows us to condition on Xt−p for any p > 0

and so for this example it will be easiest to condition on Xt−2.
We have

E[g(Xt )g(Xt )

|Xt−2]

= E[g(Xt )|Xt−2]E[g(Xt )|Xt−2]
 + Cov(g(Xt )|Xt−2).

The first matrix is an outer product of a vector with itself so
it is positive semi-definite and it suffices to lower bound the
eigenvalues of the covariance matrix Cov(g(Xt )|Xt−2). Recall
that a matrix B is said to be strictly diagonally dominant if

bi,i −
�

j �=i

|bi, j | ≥ ω > 0

for all i , and the eigenvalues of a symmetric strictly diagonally
dominant matrix are lower bounded by ω. To lower bound the
eigenvalues of the covariance matrix, we will show it is strictly
diagonally dominant. We break the rows up into two cases. The
first case corresponds to rows where the diagonal depends on
a lagged count Xt−1,m while the second case corresponds to
rows where diagonal depends on a count Xt,m without a lag.

Case 1 (Rows 1 Through M)
The first M rows of Cov(g(Xt )|Xt−2) have

their diagonal of the form Var(Xt−1,m |Xt−2) ≥
Rmin. We have Cov(Xt−1,m, Xt−1,m� |
Xt−2) = 0 for all m� �= m. If node m is not a parent
of m�, then Xt−1,m and Xt,m� are independent conditioned on
Xt−2, so Cov(Xt−1,m, Xt,m� |Xt−2) = 0. All that remains is to
control Cov(Xt−1,m, Xt,m� |Xt−2) for the ρ

(c)
m children of m.

To do this, recall the decomposition Xt,m� = exp(νm� +
a


m.� g(Xt−1)) + 
t,m� . For the remainder of the proof we let
fm�(Xt ) = exp(νm� + a


m.� g(Xt )) for notational simplicity and
note that the Poisson noise term 
t,m is zero mean conditioned
on Xt−1,m . Hence

Cov(Xt−1,m, Xt,m� |Xt−2) = Cov(Xt−1,m, fm� (Xt−1)|Xt−2).

Since fm� (Xt−1) takes values in the interval [Rmin, Rmax],
the variance of fm�(Xt−1) is bounded by a scaled Bernoulli
random variable which takes values 0 with probability 1

2 and
Rmax − Rmin with probability 1

2 . This variance is equal to
(Rmax−Rmin)2

4 and therefore

Cov(Xt−1,m, fm� (Xt−1)|Xt−2)

≤ !
Var(Xt−1,m |Xt−2)Var( fm� (Xt−1)|Xt−2)

≤
√

Rmax(Rmax − Rmin)

2
.

Hence the off diagonal entries sum to at most

ρ
(c)
m

√
Rmax(Rmax − Rmin)

2
so for these rows of the covariance matrix we have

Cov(g(Xt ))i,i −
�

j �=i

Cov(g(Xt ))i, j

≥ Rmin − ρ
(c)
m

√
Rmax(Rmax − Rmin)

2
. (A.11)

Case 2 (Rows M + 1 Through 2M)
We next consider the final M rows of the covariance matrix

whose diagonal is of the form Var(Xt,m |Xt−2) ≥ Rmin.
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We know Cov(Xt,m, Xt−1,m� |Xt−2) will be zero whenever
node m� is not a parent of m, and for the ρ

(p)
m parents of

m, the covariance is bounded below by
√

Rmax(Rmax − Rmin)

2

just as in the previous paragraph.
Finally, we need to consider Cov(Xt,m, Xt,m� |Xt−2). When

m and m� are not siblings this covariance will be zero. When
they do share a parent, we again recall the decomposition
Xt,m = fm(Xt−1) + 
t,m and Xt,m� = fm� (Xt−1) + 
t,m� and
note that the 
t,m and 
t,m� are zero mean conditioned on Xt,m�
and Xt,m respectively. Therefore

Cov(Xt,m, Xt,m� |Xt−2) = Cov( fm(Xt−1), fm� (Xt−1)|Xt−2)

and using the fact that each fi (Xt ) takes values in the interval
[Rmin, Rmax] it follows that this covariance is bounded by

!
Var( fm(Xt−1)|Xt−2)Var( fm�(Xt−1)|Xt−2)≤ (Rmax− Rmin)

2

4
.

Recall that ρ
(s)
m denotes the number of siblings of m. Overall

we have concluded that the sum of the off diagonal entries for
the first m rows is at most

ρ
(p)
m

√
Rmax(Rmax − Rmin)

2
+ ρ

(s)
m (Rmax − Rmin)

2

4

so that for these rows we have

Cov(g(Xt ))i,i −
�

j �=i

Cov(g(Xt ))i, j

> Rmin − ρ
(p)
m

√
Rmax(Rmax − Rmin)

2

− ρ
(s)
m (Rmax − Rmin)

2

4
. (A.12)

We conclude that the smallest eigenvalue of the covariance
matrix is lower bounded by the minimum of the two lower
bounds in Equations (A.11) and (A.12), and we define this
minimum to be rρ .

D. Proof of Lemma IV.3

We know from Equation (A.4) that ��S⊥�1 ≤ 3��S�1 and
since

���1 = ��S⊥�1 + ��S�|1
it follows that ���1 ≤ 4��S�1. Recall that �v�1 ≤ √

s�v�2
for any s-sparse vector v. Thus we have

���1 ≤ 4��S�1 ≤ 4
√

s��S�F ≤ 4
√

s���F .

For Assumption 4 we use a concentration result due to [39]
in a similar manner as in [22]. The result is restated as
Theorem A.4 below. Define Yn = 1

T

�n
t=1 g(Xt )i
t, j and note

the following values

Yn − Yn−1 = g(Xn)i

T

n, j

and

Mk
n =

n�

t=1

E

"�
g(Xt )i

T

t, j

�k  
 Xt−1

#

.

Thus Yn is a martingale. We have g(Xt )i ≤ U , and by
[22, Lemma 1],


t, j ≤ Xt, j ≤ C log(MT )

for all t, j with probability at least 1 − exp(−cMT ). Thus,

|Yn − Yn−1| ≤ CU log(MT )

T
=: B

with this same probability. Next, note that

M2
n =

n�

t=1

E

"
g(Xt )

2
i

T 2 
2
t, j

 
 Xt−1

#

≤ 1

T 2

n�

t=1

U2 Rmax

= n

T 2 U2 Rmax =: $Mn
2
.

Here we use that E[
2
t, j |Xt−1] is the variance of a Poisson

random variable with mean bounded by Rmax, so it must also
be bounded by Rmax. Next, we bound Mk

n :

Mk
n :=

n�

i=1

E
�
(

g(Xi )m

T 2 (Xi,l − E[Xi,l |Xi−1]))k
 
 Xi−1

�

≤ Bk−2 M2
n .

In the language of Theorem A.4,

Dn :=
�

k

γ k

k! Mk
n

≤ $Mn
2

B2

�

k

γ k Bk

k! =: �Dn .

Let D̃n corresponds to the negative sequence of Dn , and so it
is still bounded by $Dn . Using Markov’s inequality, we get

P(|Yn| ≥ y) = P(Yn ≥ y) + P(−Yn ≤ y)

≤ E[exp(γ Yn)] exp(−γ y)

+ E[exp(−γ Yn)] exp(−γ y)

≤ E[exp(γ Yn − Dn)] exp($Dn − γ y)

+ E[exp(−γ Yn) − D̃n] exp($Dn − γ y).

Using Theorem A.4 we conclude that

E[exp(γ Yn − Dn)] ≤ 1

and E[exp(γ Yn − D̃n)] ≤ 1 so

P(|Yn| ≥ y) ≤ 2 exp(�Dn − γ y).

We set

γ = 1

B
log

�

1 + y B

$Mn
2

�
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and to simplify things note that (1+x) log(1+x)−x ≥ 3x2

2(x+3) .
Putting everything together gives

P(|YT ≥ y|) ≤ 2 exp

�
−3y2

2y B + 6 $Mn
2

�

= 2 exp

�
3y2T

2UC log(MT )y + 6Rmax

�

.

Now, recall that

λ

2
= 4C RmaxU2 log2(MT )√

T

and setting y = λ
2 gives

P(YT ≥ λ

2
) ≤ 2 exp

⎛

⎝ 48U log(MT )

2/
√

T + 6Rmax
C2U log3(MT )

⎞

⎠

≤ 2 exp

�
48U log(MT )

8

�

.

Taking a union bound over all i, j gives us

P

�
max

i, j

1

T

 
 
 
 
 

T�

t=1

g(Xt )i
t, j

 
 
 
 
 
≥ λ

2

�

≤ exp(log(2M2) − 6U log(MT ))

≤ exp(3 log(MT ) − 6U log(MT ))

= exp(−c log(MT ))

for c = 6U − 3 which is positive since U ≥ 1. In the final
statement of the proof we assume C log(MT ) ≥ U and replace
U with C log(MT ) in order to limit the number of constants
and make the crucial dependencies clear. This assumption
should hold for reasonable choices of U in the settings we
imagine in practice, but if not, a factor of log2(MT ) can be
replaced by U2 in the final bound.

E. Proof of Lemma IV.5

For Assumption 2, note that any A ∈ SG satisfies A.c = 0
for i �∈ SG . Therefore

���G ≤ 4��SG
�G = 4

�

i∈SG

��.i�2

≤ 4
√

sG��SG
�F

≤ 4
√

sG���F .

For Assumption 3, we have ���2
G ≤ 16sG���2

F from the
previous paragraph, and we claim �A�2,1 ≤ �A�G for any
matrix A. To see this, we compute

�A�2
G =

⎛

⎝
�

c

)�

r

a2
r,c

⎞

⎠

2

=
�

c

�

c�

)

(
�

r

a2
r,c)(

�

r

a2
r,c�)

while

�A�2
2,1 =

�

r

(
�

c

|ar,c|)2

=
�

c

�

c�

�

r

|ar,c�ar,c� |.

To complete the proof, we fix c, c� and need to show

�

r

|ar,c�ar,c� | ≤
)

(
�

r

a2
r,c)(

�

r

a2
r,c�),

or equivalently that

(
�

r

|ar,c�ar,c� |)2 ≤ (
�

r

a2
r,c)(

�

r

a2
r,c�).

We have

(
�

r

|ar,c�ar,c� |)2 =
�

r

�

r �
|ar,car,c�ar �,car �,c� |.

Let J denote all two element combinations of M and we can
write
�

r

�

r �
|ar,car,c�ar �,car �,c� |

=
�

r

(ar,car,c�)2 +
�

(i, j )∈J
2|ai,ca j,cai,c� a j,c� |.

On the other hand,

(
�

r

a2
r,c)(

�

r

a2
r,c�) =

�

r

�

r �
a2

r,c a2
r �,c�

=
�

(i, j )∈J
(ai,ca j,c�)2 + (a j,cai,c� )2

+
�

r

(ar,car,c�)2.

The proof follows from noting that

(ai,ca j,c�)2 + (a j,cai,c� )2 ≥ 2|ai,ca j,cai,c� a j,c� |
for any real numbers ai,c, ai,c� , a j,c, a j,c� .

For Assumption 4, we rely on [42, Th. 1] which is restated
as Theorem A.3. In our setup, we need to bound the l2 norm
of the mth column of 1

T

�
t 
t g(Xt )


. Note that the l2 norm
is 2-smooth, because for any x, y ∈ R

m we have

�x + y�2 + �x − y�2

= x + y, x + y� + x − y, x − y�
= 2x, x� + 2y, y�.

In the language of Theorem A.3, for a fixed m we form a
martingale difference sequence {Zt } with

Zt = 1

T

�

t g(Xt )


�

.m

so that

�Zt�2 = 1

T

)�

m�
(g(Xt )m
t,m�)2

= g(Xt )m

T

)�

m�

2

t,m� .

We know g(Xt )m ≤ U and by Lemma 1 from [22] 
t,m� ≤
C log(MT ) with probability at least 1 − exp(−cMT ). We
conclude

�Zt�2 ≤ 1

T
U

�

MC log2(MT )
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and thus
T�

t=1

�Zt�2
2 ≤ CU2 log2(MT )

M

T
.

To compute the constant Qmax appearing in Theorem A.3 we
let R(x) = x
x so that ∇ R(x) = x . Then for any x, y in the
unit ball with respect to the � · �2 norm, we have

DR(x, y) = �x�2
2 − �y�2

2 − y, x − y�
≤ �x�2

2 + �y�2�x − y�2 ≤ 3.

by Cauchy-Schwarz. Thus we can take Qmax = √
3. To

simplify, we note Wn ≤ Vn and

(E[!Vn + Wn])2 ≤ E[Vn + Wn] ≤ 2Vn .

Further, 2.5Qmax(
√

Vn + 1) ≤ 5
√

Vn . With these simplifica-
tions, [42, Th. 1] says that

P

� 1

T

�
�
� �

t


t g(Xt )

�

.m

�
�

2 > (5 + 2u)Vn

�
≤ √

2 exp

�

−u2

16

�

.

Setting y = CU log2(MT )
�

M
T and plugging in our values for

Vn we conclude that

P
� 1

T

�
�
� �

t


t g(Xt )

�

.m

�
�

2 > y
� ≤ √

2exp(− log2(MT )).

Taking a union bound over all m, we get that

1

T

�
�
�
� �

t


t g(Xt )

�

.m

�
�
�

2
≤ y

for all m with probability at least

1 − √
2 exp(− log(MT )) = 1 −

√
2

MT
.

F. Proof of Lemma IV.7

For Assumption 3, from the statement of Lemma IV.7 we
have �A∗�2

2,1 ≤ D
√

M and we search for �A over the ball
{A : �A�2

2,1 ≤ D
√

M}. Thus

sup
B∈B�

R
�B�2

2,1 ≤ 2D
√

M = μR.

In contrast to the sparsity case, Assumption 2 is nontrivial to
verify in the low-rank case because W �= W . However, this
condition was shown in [44, Lemma 3.4].

For Assumption 4 we rely on the notion of a k-regular
normed vector space defined in Section I as well as
[50, Th. 2.1] which is stated in Theorem A.2. Further,
[50, Example 3.1] establishes that (RM×M K , �·�∗) is k-regular
for k = 3 log(min(M, N)). In the language of Theorem A.2
we form a martingale difference sequence {ζt } with ζt =
1
T 
t g(Xt )


 and then

�ζt�op = 


t g(Xt )

T
= 1

T

M�

m=1


t,m g(Xt )m .

Consider the random variable

M�

m=1


t,m g(Xt )m .

We have g(Xt )m ≤ U and 
t,m ≤ C log(MT ) for all t, m with
probability at least e−cMT by [22, Lemma 1]. Further, condi-
tioned on Xt , the 
t,m g(Xt )m are all independent, so (A.13)
is a sum of zero mean independent random variables bounded
by CU log(MT ). Hence, we have

M�

m=1

E[
t,m g(Xt )m |Xm−1] ≤ C M log2(MT )U2

and applying Bernstein’s inequality gives

P
�|



t g(Xt )| >
√

M log2(MT )
�

≤ 2 exp

⎛

⎝− log4(MT )/2

C log2(MT )U2 + CU log(MT )

3
√

M

⎞

⎠

Therefore

P
�|



t g(Xt )| >
√

M log2(MT ) for some t
�

≤ 2 exp

�
log(T ) − log4(MT )

2C log2(MT )U2 + 1

�

≤ exp

�

− log4(MT )

4C log2(MT )U2 + 2

�

.

We apply Theorem A.2 with k = 3 log(M),

T�

i=1

σ 2
i = M log4(MT )

T

and γ = log(T ). Then for

y := (3
√

2 log(M) + √
2 log(T )) log4(MT )

�
M

T

we have

P
� 1

T
�

�

t


t g(Xt )

�op > y

� ≤ exp

�− log2(T )

2

�

.

G. Proof of Proposition 1

In this proof, we take λ
(c)
m (τ ) to mean λ

(c)
m (τ ;Xτ ). Using

the approximation
� �t

(t−1)�
λ(c)

m (τ )dτ ≈ �λ(c)
m (�t)

we derive an approximate sampled Hawkes (SH) log-
likelihood proportional to

H (XT �|{λ(c)
m }m) ≈

M�

m=1

T�

t=1

[Xt,m log λ(c)
m (�t) − �λ(c)

m (�t)]

=: S H (XT |{λ(c)
m }m).
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If Xt,m were generated according to (II.3) with intensity
(VI.5) for T = 1, . . . T , then, ignoring terms independent
of A∗,

P (Xt |{�λ(c)
m (X�t )}t,m)

:=
M�

m=1

T�

t=1

[Xt,m log �λ(c)
m (�t) − �λ(c)

m (�t)].

Note that

P(XT |{�λ(c)
m (X�t )}t,m = S H (XT |{λ(c)

m }m) + C

where the constant C depends on � but is independent
of λ

(c)
m .

H. Extension to More General Saturation Functions

In the main body of the paper the only saturation function
we consider is f (x) = min(x, Ũ) for purposes of simplicity,
but our theory extends to a larger class of saturation func-
tions f . However, for our analysis it is crucial to assume
that the function f is bounded so that we can define the
maximum and minimum rates, Rmin and Rmax, from which
each observation is drawn. The only place where we rely
on the structure of f beyond its boundedness is in proving
the restricted eigenvalue condition in Assumption 1. In the
case of the ARMA(1, 1) model, we show our results extend
to monotonic differentiable functions in Proposition 2 below.

Proposition 2. Suppose (Xt )
T
t=1 is generated according to the

ARMA(1, 1) model in (IV.1) with a general saturation function
f applied entrywise to the vector Xt . Suppose f is bounded on
R, monotonically increasing, and differentiable with f �(x) ≥ c
on [0, Rmax]. Then

λmin[E[g(Xt )g(Xt )

|Xt−1] ≥ c2 min(

1

2
Rmin, κ).

Proof
We have

E[g(Xt )g(Xt )

|Xt−1] = E[g(Xt )|Xt−1]E[g(Xt )|Xt−1]


+ Diag(Var(g(Xt )|Xt−1))

where the first matrix is positive semi-definite because it is the
outer product of a vector with itself. Thus, to come up with
a lower bound for our original matrix, we just need to lower
bound the smallest element of Var(g(Xt )|Xt−1). This amounts
to lower bounding the variance of f (X) where X is a Poisson
random variable with mean λ ∈ [Rmin, Rmax].

Let p = P(X ≤ �λ�) so 1 − p = P(X ≥ �λ�). Consider the
random variable X � which takes the value �λ� with probability
p and �λ� with probability 1 − p. Since f is monotonic,
the argument from Lemma A.1 shows that Var( f (X �)) ≤
Var( f (X)) so we reduce our problem to lower bounding the
variance of f (X �).

Note that this variance is equal to the shifted random
variable X �� defined by f (X �) = 0 with probability p and
f (�λ�) − f (�λ�) with probability 1 − p which is a scaled
Bernoulli random variable with variance

( f (�λ�) − f (�λ�))2 p(1 − p).

Since f �(x) ≥ c on [0, Rmax],
f (�λ�) − f (�λ�) ≥ c

and so the lower bound on our variance becomes c2 p(1 − p).
Finally, by Lemma IV.1 we have p(1 − p) ≥ min( 1

2 Rmin, κ)
which completes the proof.

I. Supplemental Theorems

Definitions
Before introducing martingale concentration results, we give

the following definitions.

Definition 1. A Banach space (E, � · �) is s-smooth if there
exists C > 0 satisfying

�x + y�s + �x − y�s ≤ 2�x�s + 2Cs�y�s

for all x, y ∈ E .

Note that (RM , � · �2) is 2-smooth with C = 1 because

�x + y�2 + �x − y�2

= x + y, x + y� + x − y, x − y�
= 2x, x� + 2y, y�.

Definition 2. A Banach space (E, � · �) is k − regular if there
exists k+ ∈ [1, k] along with a norm �·�+ such that (E, �·�+)
is k+-smooth and

�x�2 ≤ �x�2+ ≤ k

k+
�x�2

for all x ∈ E .

By [50, Example 3.3], the space (RM×N , � ·�∗) is k-regular
for k = 3 log(min(M, N)).

Theorem A.2. ([50, Th. 2.1.iii]):
Let (E, � · �) be k-regular and let ζi be an E-valued

martingale difference sequence with �ζi� ≤ σi . Let SN =�N
i=1 ζi . Then

P

�
�SN � ≥ (

√
2k + √

2γ )

*
+
+
,

N�

i=1

σ 2
i

�
≤ exp(−γ 2

2
).

Theorem A.3. ([42, Th. 1]): Let (E, � · �) be a 2-smooth
Banach space. Let R be a function which is 1-strongly convex
on the unit ball in the dual norm of � · �.

DR : B∗ × B∗ → R

be the Bregman divergence with respect to R, and finally let
Q2

max = supx,y∈B∗ DR( f, g). Let Z1, . . . , Zn be a martingale
difference sequence with Vn = �n

t=1 �Zt�2 and Wn =�n
t=1 Et−1�Zt�2. Then for

y := 2.5Qmax(
!

Vn + 1) + u
�

Vn + Wn + (E[!Vn + Wn])2

we have

P
��

n�

t=1

Zt� > y
� ≤ √

2 exp(−u2

16
).
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Theorem A.4. ([39, Lemma 33]): Let (Yn) be a martingale
and let

Mk
n =

n�

i=1

E[(Yi − Yi−1)
k |Yi−1].

Let γ be such that for all i ≤ n, we have

E[exp(|γ (Yi − Yi−1)|)] ≤ ∞.

Then


n = exp(γ Yn −
�

k≥2

γ k

k! M K
n )

is a super-martingale. Moreover, if Y0 = 0 then E[
n] ≤ 1.

Theorem A.5. (Azuma-Hoeffding Inequality) Let (Yn) be a
martingale and |Yn − Yn−1| < cn. Then

P(|YN − Y0| ≥ t) ≤ 2 exp

�

− t2

2
�N

n=1 c2
n

�

.
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